

Class QZ 13
Evaluate

$$\begin{vmatrix} 2 & -5 & 1 \\ 1 & 3 & 0 \\ 3 & -2 & 1 \end{vmatrix} = 2 \begin{vmatrix} 3 & 0 \\ -2 & 1 \end{vmatrix} = (-5) \begin{vmatrix} 1 & 0 \\ 3 & 1 \end{vmatrix} + 1 \begin{vmatrix} 1 & 3 \\ 3 & -2 \end{vmatrix}$$

 $= 2(3 - 0) + 5(1 - 0) + 1(-2 - 9)$
 $= 2(3) + 5(1) + 1(-11) = 6 + 5 - 11 = 0$

Rational exponents and vadical notations:

$$\chi \frac{m}{n} = \sqrt[m]{\chi} \frac{m}{n}$$
Redicand
index
Given $\sqrt[5]{\chi^3}$ I) Radicand = χ^3
2) Index = 5
3) write using rational exponent
 $\chi \frac{3}{5}$
(iven $\chi \frac{3}{5}$
(iven $\chi \frac{3}{5}$
(2x - 3) I) write using vadical
notation $\sqrt[3]{(2x-3)} = \sqrt[3]{2x-3}$
2) Index = 3 3) Radicand
 $2\chi - 3$

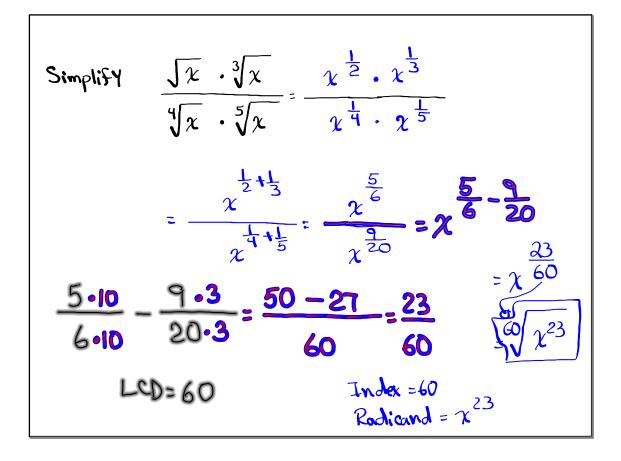
when index is even => Radicand
$$\ge 0$$

Answer ≥ 0
 $\sqrt[4]{-16}$ is undefined. even index
radicand < 0
 $\sqrt[6]{z+2}$ even index => Radicand ≥ 0
 $2 + 2 \ge 0$
 $\xrightarrow{z+2 \ge 0}$
 $\xrightarrow{z-2}$

$$\sqrt[n]{\chi}$$
 = Answer \Rightarrow Answer $= \chi$
IS n is even $\Rightarrow \chi \ge 0$, Answer ≥ 0
IS n is odd $\Rightarrow \chi$ and Answer have
Same Sign
both + or both -
when index = n not given
 \Rightarrow it is assumed to be 2
 \Rightarrow Square root

$$\sqrt[3]{8} = 2$$
Answer = 8
$$2^{3} = 8$$

$$2^{3} = 8$$


$$2^{3} = 8$$
Answer = -32
$$(-2)^{5} = -32$$

$$(-2)^{5} = -32$$
odd index
$$\sqrt[4]{-81}$$
Undefined
$$\sqrt[4]{-81}$$
Undefined
$$\sqrt[4]{-81}$$
Undefined
$$\sqrt[4]{-81} = \frac{3}{2}$$

$$(3)^{4} = \frac{5}{2}$$

March 9, 2021

Simplify, Sinal Answer in a (Single radical) $\chi^{m} \chi^{\eta} = \chi^{m+\eta}$ $\sqrt[4]{\chi} \cdot \sqrt[5]{\chi}$ $= \chi^{\frac{1}{4}} \cdot \chi^{\frac{1}{5}} = \chi^{\frac{1}{4} + \frac{1}{5}} = \chi^{\frac{9}{20}} = \chi^{\frac{9}{20}} \chi^{\frac{9}{20}}$ $5\sqrt{\chi^{2}} \cdot \sqrt[3]{\chi} = \chi^{\frac{2}{5}} \cdot \chi^{\frac{1}{3}} = \chi^{\frac{2}{5}} \cdot \frac{1}{3} \cdot \frac{2}{5} \cdot \frac{1}{3} \cdot \frac{2}{5} \cdot \frac{1}{3} \cdot \frac{1}{5} \cdot \frac{5}{3} \cdot \frac{5}{3} \cdot \frac{5}{3} \cdot \frac{5}{3} \cdot \frac{5}{5} = \frac{11}{15} = \frac{11}{15} = \frac{11}{15} \cdot \frac{15}{5} \cdot \frac{11}{5} \cdot \frac{15}{5} \cdot \frac{15}{5}$ $\frac{\sqrt[4]{\chi^3}}{5\sqrt[5]{\chi^2}} = \frac{\chi^{\frac{3}{4}}}{\chi^{\frac{3}{5}}} = \chi^{\frac{3}{4} - \frac{2}{5}} = \chi^{\frac{3}{5} - \frac{2}{5}} = \chi^{\frac{3}{4} - \frac{2}{5$

Rules of radicals:

$$\sqrt[\eta]{\chi^{\eta}} = \chi , (\sqrt[\eta]{\chi})^{n} = \chi$$

 $\sqrt[\eta]{AB} = \sqrt[\eta]{A} \sqrt[\eta]{B}$
Assume all radicards ≥ 0
 $\sqrt{A0\chi} = \sqrt{4 \cdot 5\chi} = \sqrt{4} \sqrt{5\chi} = 2\sqrt{5\chi}$
 $\sqrt[\eta]{AB} = \sqrt[\eta]{A} \sqrt[\eta]{B}$
 $\sqrt{30\chi} = \sqrt{4 \cdot 5\chi} = \sqrt{4} \sqrt{5\chi} = 2\sqrt{5\chi}$
 $\sqrt[\eta]{AB} = \sqrt[\eta]{A} \sqrt[\eta]{B}$
 $\sqrt{30\chi} = \sqrt{4 \cdot 5\chi} = \sqrt{4} \sqrt{5\chi} = 2\sqrt{5\chi}$
 $\sqrt{30\chi} = \sqrt{4 \cdot 5\chi} = \sqrt{4} \sqrt{5\chi} = \sqrt{5\chi} = \sqrt{10\chi^{2}\sqrt{3\chi}}$
 $\sqrt{300\chi^{5}} = \sqrt{100 \cdot 3 \cdot \chi^{2} \cdot \chi^{2} \cdot \chi} = \sqrt{100\chi^{2}\sqrt{3\chi}}$
 $= 10\chi \propto \sqrt{3\chi} = 10\chi$

Simplify
Simplify

$$3\sqrt{54 x^{6} y^{12}}$$

 $= \sqrt{3}\sqrt{54 x^{6} y^{2}}$
 $= \sqrt{3}\sqrt{54 x^{6} y^{2}}$
 $= \sqrt{3}\sqrt{54 x^{3} x^{3} x^{3} y^{3} y^{3} y^{3} y^{3} y^{3}}$
 $= \sqrt{3}\sqrt{2} \cdot 2 \cdot x^{3} x^{3} y^{3} y^{3} y^{3} y^{3} y^{3} y^{3}$
 $= \sqrt{3}\sqrt{2} \cdot 2 \cdot x^{3} x^{3} y^{3} y^{3} y^{3} y^{3} y^{3} y^{3} y^{3}$
 $= \sqrt{3}\sqrt{2}\sqrt{2}\sqrt{3}\sqrt{2}$
 $= 3x x y y y y y^{3}/2 = 3x^{2}y^{3} \sqrt{2}$
Simplify $\sqrt{16 x^{5} y^{11}} = \sqrt{2^{4} \cdot x^{3} x \cdot y^{3} \cdot y^{3}}$
 $= \sqrt{2^{4} x^{4} y^{5}} \sqrt{3} \cdot y^{3}$
 $= \sqrt{2^{4} x^{4} y^{3}}$

Simplify
3
$$5000 x^4 y^{11} z^{17}$$

 $= 3 \sqrt{10^3 x^3 y^9 z^{15}} \sqrt{5x y^2 z^2}$
 $= 10 x y^3 z^5 \sqrt[3]{5x y^2 z^2}$
 $x' = x^3 \cdot x$
 $y'' = y^9 \cdot y^2$
 $z^{17} = z^{15} \cdot z^2$
 $5000 = 1000 \cdot 5$
 $= 10^3 \cdot 5$

Simplify

$$5\sqrt{-32} \sqrt{2} \sqrt{2} \sqrt{11} \sqrt{2}^{33}$$

 $= 5\sqrt{(-2)^5} \sqrt{2^5} \sqrt{10^2} \sqrt{2^{30^6}} \sqrt{1} \sqrt{2^2} \sqrt{2^3}$
 $= (-2 \sqrt{2)^2} \sqrt{2^6} \sqrt{\sqrt{2^2} \sqrt{2^3}}$

Distribute and Simplify

$$50 = 1.50$$

 $= 2.25$
 $\sqrt{5}(\sqrt{10} - \sqrt{5})$
 $= \sqrt{5}\sqrt{10} - \sqrt{5}\sqrt{5}$
 $= \sqrt{50} - \sqrt{25} = \sqrt{25}\sqrt{2} - \sqrt{25}$
 $= 5\sqrt{2} - 5$
Distribute and Simplify
 $2\sqrt{6}(3\sqrt{2} - 5\sqrt{6})$
 $= 2\sqrt{6} \cdot 3\sqrt{2} - 2\sqrt{6} \cdot 5\sqrt{6}$
 $= 6\sqrt{12} - 10\sqrt{36}$
 $= 6\sqrt{4}\sqrt{3} - 10.6$
 $= 6\sqrt{2}\sqrt{3} - 60$
 $= 12\sqrt{3} - 60$

Foil
$$\dot{\epsilon}$$
 Simplify
 $(\sqrt{5} + \sqrt{3})(\sqrt{5} - \sqrt{3})$
 $= \sqrt{25} - \sqrt{15} + \sqrt{15} - \sqrt{9}$
 $= 5 - 3 = [2]$

Soil and Simplify

$$(2\sqrt{3} + 1)^2 = (2\sqrt{3} + 1)(2\sqrt{3} + 1)$$

 $= 2\sqrt{3} \cdot 2\sqrt{3} + 2\sqrt{3} \cdot 1 + 1 \cdot 2\sqrt{3} + 1$
 $= 4\sqrt{9} + 2\sqrt{3} + 2\sqrt{3} + 1$
 $= 4 \cdot 3 + 4\sqrt{3} + 1$
 $= 12 + 4\sqrt{3} + 1$
 $= 13 + 4\sqrt{3}$

Find avec
$$\dot{\xi}$$
 perimeter df
 $A = LW$
 $P = 2L + 2W$
 $3\sqrt{2} - \sqrt{5}$
 $A = LW = (3\sqrt{2} + \sqrt{5})(3\sqrt{2} - \sqrt{5})$
 $a = \sqrt{4} - 3\sqrt{6} + 3\sqrt{6} - \sqrt{25} = 9\cdot2-5$
 $a = 18-5 = 13$
 $P = 2L + 2W$
 $= 2(3\sqrt{2} + \sqrt{5}) + 2(3\sqrt{2} - \sqrt{5}) =$
 $= 6\sqrt{2} + 2\sqrt{5} + 6\sqrt{2} - 2\sqrt{5} = 12\sqrt{2}$ units

Simplify
$$(5\sqrt{2} - 3)^2 = (5\sqrt{2} - 3)(5\sqrt{2} - 3)$$

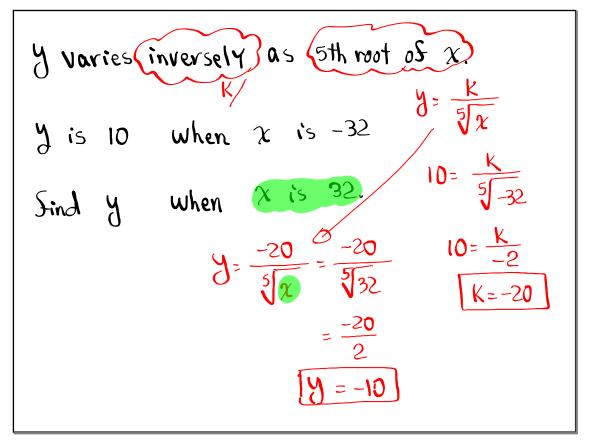
 $= 25\sqrt{4} - 15\sqrt{2} - 15\sqrt{2} + 9$
 $= 25 \cdot 2 - 30\sqrt{2} + 9$
 $= 59 - 30\sqrt{2}$
Foil and Simplify $= 59 - 30\sqrt{2}$
 $(3\sqrt{3} - 3\sqrt{2})(3\sqrt{9} + 3\sqrt{6} + 3\sqrt{4})$
 $= (3\sqrt{2})^2 + 3\sqrt{8}(3\sqrt{9} + 3\sqrt{2})^2 + 3\sqrt{8}$
 $= 3 - 2 = 1$

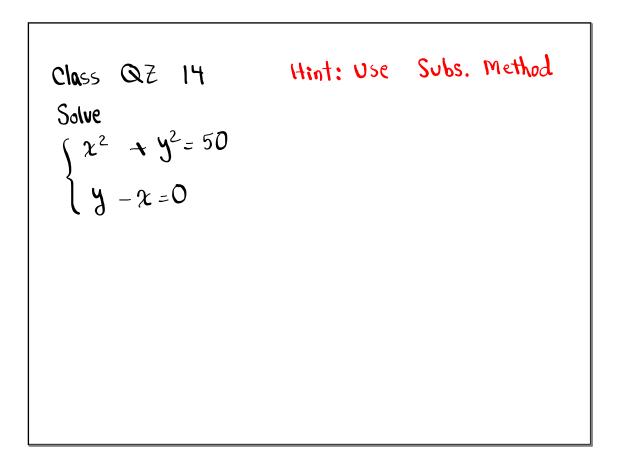
Foil a Simplify

$$(\sqrt[3]{5}, \sqrt[3]{3}, \sqrt[3]{25}, \sqrt[3]{15}, \sqrt[3]{9})$$

 $= \sqrt[3]{125}, \sqrt[3]{15}, \sqrt[3$

Multiply
$$\sqrt{10} - 3$$
 by its Conjugate, then
 $(\sqrt{10} - 3)(\sqrt{10} + 3)$
 $= \sqrt{100} + 3\sqrt{10} - 3\sqrt{10} - 9$
 $= 10 - 9 = 1$
Multiply $5\sqrt{2} + \sqrt{5}$ by its Conjugate, then
Simplify
 $(5\sqrt{2} + \sqrt{5})(5\sqrt{2} - \sqrt{5})$
 $= 25\sqrt{4} - 5\sqrt{10} + 5\sqrt{10} - \sqrt{25}$
 $= 25 \cdot 2 - 5 = 45$


Г


Solve There are 4 possible answers,

$$\begin{cases} ax^2 + y^2 = 33 \\ x^2 - 2y^2 = -46 \end{cases}$$
 $\begin{cases} y^2 = 33 - 2x^2 \\ x^2 - 2y^2 = -46 \end{cases}$
 $\begin{cases} x^2 - 2(33 - 2x^2) = -46 \\ x^2 - 66 + 4x^2 = -46 \end{cases}$
 $\begin{cases} y^2 = 33 - 2x^2 \\ x^2 - 66 + 4x^2 = -46 \\ 5x^2 = -46 + 66 \end{cases}$
 $= 33 - 2(4)$
 $5x^2 = 20$ Divide by 5
 $y^2 = 33 - 8$
 $y^2 = 33 - 8$
 $y^2 = 33 - 8$
 $y^2 = 25$
 $y^2 = 25$
 $y^2 = 25$
 $y^2 = 45$
 $(x = \pm 2)$
 $y^2 = 25$
 $y^2 = 25$
 $(x = \pm 5)$
 $(x = \pm 2)$
 $($

Г

Y varies directly) as χ^4 $y = K\chi^4$ Y is 64 when χ is 2 $64 = K(2)^4$ 64=16K Find y when x is -2. K=4 J=4x4 Y=4(-2)4 Y= 64

